Co-deposition of COOH-POSS on the surface of PES nanofiltration membranes for improving the permeability and anti-fouling properties

Zahra Safikhani¹, Abdolreza Moghadassi¹,*, Samaneh Bandehali¹, Farideh Ahmadi¹, Maryam Ghafari¹

Abstract

In this study, a new type of polyethersulfone (PES)-based nanofiltration (NF) membrane was fabricated through the modification of membranes surface by using 4-aminobutyric acid-functionalized glycidyl POSS for the improvement of the physicochemical properties and membrane separation performance. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and 3D surface images, pure water flux, water content, water contact angle, salt rejection were used in membrane characterization. The SEM images showed the finger like structure for the modified membranes. Moreover, the SEM images of the membrane surface revealed the excellent dispersion of modified POSS particles on the membrane surface. The water content angle of fabricated membranes declined compared to the virgin PES membrane that indicates the enhancement of membrane hydrophilicity. Water content of the fabricated membranes enhanced from 68% for the neat PES membrane to 77.55% for the one fabricated membrane. However, the pure water flux revealed the decline trend. But among prepared membranes, M3 at 1.5 wt.% COOH-POSS concentration showed the best CrSO₄ rejection (80%) and Na₂SO₄ rejection (62%). Moreover, M1 at 0.5 wt.% of COO-POSS showed the Pb(NO₃)₂ and Cu(NO₃)₂ rejection 83% and 80%, respectively.

Keywords: Polyethersulfone, Nanofiltration membranes, 4-aminobutyric acid, Octaglycidyloxypropyl-silsequioxane, Salt removal

1. Introduction

These days, increasing demand for freshwater is the most important reason for the improvement of membrane technologies for the wastewater revival and desalination [1-4]. Nanofiltration (NF) membrane has high rejection for multivalent ions [5, 6]. High removal of pollutants, passable chemical and mechanical resistance, improvement of antifouling properties and long-life are considered as the main properties in the knowledge of membrane [7, 8]. Membrane surface modification such as grafting, surface coating and other different treatments such as UV irradiation, plasma treatment, and chemical treatment is a promising technique to the increment of the membrane separation properties. Meanwhile, introducing inorganic nanoscale materials on the surface of membrane is the routes to improve membrane separation performance [9-14]. Different nanomaterials were studied such as metal oxide nanoparticles, graphene oxide (GO) nanosheets, carbon nanotubes (CNT), metal-organic frameworks (MOFs) and etc [15-18].

Xiong et al. [19] fabricated PES-based NF membranes from polyethyleneimine (PEI), glutaraldehyde (GA) and carboxymethyl chitosan (NO-CMC) by layer-by-layer method. The antibiological fouling performance of the fabricated membranes improved by coating silver nanoparticles (AgNPs) on the membrane surface. The results exhibited the rejection of salt in the order of MgCl₂ > MgSO₄ > CaCl₂ > Na₂CO₃ > NaCl > Na₂SO₄. Moreover, the fabricated membranes revealed the rejection of heavy metals for Cr³⁺: 88.95%, Cu²⁺: 84.04%, Cd²⁺: 82.69% and Ni²⁺: 83.47%. Huang et al. [20] used Ag@ZnO-Oleic acid (OAc) core-shell nanoparticles for the fabrication of polyamide (PA) thin-film nanocomposite (TFN) membranes by trimesoyl chloride (TMC) solutions in an interfacial polymerization process. The physicochemical properties of TFN membranes improved by applying nanoparticles. These membranes showed higher salt rejection and a lower decline of flux in BSA filtration compared with the TFC membrane without nanoparticle. Li et al. [21] applied a facile mussel-inspired method for the preparation of loose nanofiltration membranes. The deposition of polydopamine (PDA) on the membrane surface was performed by hydroxyl radical activation generated by CuSO₄/H₂O₂. Moreover, a zwitterionic polymer (SBMA) used for PDA/ SBMA co-deposition via polymerization. The application of SBMA led to an
electroneutral, anti-fouling and anti-bacterial surface properties. The optimum property such as anti-fouling performance and dye rejection was revealed for 2 mg/mL PDA and 2 mg/mL SBMA. Shen et al. [22] reported the grafting poly(methyl methacrylate) with multi-walled carbon nanotubes (MWNts) and the functionalization of carbon nanotube (CNT) for the fabrication of TFN PA membranes. These membranes showed high Na$_2$SO$_4$ rejection (99%) with an increase of 62% in pure water flux. Vatanpour and Khorshidi [23] reported the surface modification of porous polyvinylidene fluoride (PVDF) membranes by a layer of ultra-thin zeolitic imidazolate framework-8 (ZIF-8). The ZIF-8 layer was produced from the reaction between Zn$^{2+}$ aqueous solution and 2-methylimidazole/n-hexane solution and immersing PVDF membranes. As stated in the results hydrophilicity and pure water flux of membranes has improved significantly. Moreover, membranes showed high antifouling properties.

Polyhedral oligosilsesquioxane (POSS) is determined as a nanoparticle that includes silica cage nucleus and top groups. The chemical formula of POSS is (RSiO1.5)n R is top groups, such as aryl, alkene, hydrogen, alkyl, halogen [24]. Good dispersity and adaptability with polymers are good features for POSS. Several studies have been done about treatment of waste water by modification of surface membrane that has been used POSS as nanoparticle. Koutahzadeh et al. [25] fabricated POSS into the polysulfone (PSf) matrix in ultrafiltration membranes. The modified membranes indicated higher hydrophilicity compared to the neat membranes in this study. The permeability of the fabricated membranes increased from 33 for to 215.2 M-2h-1 for the bare PSf membrane and POSS-PSf with 2 wt.% of POSS, respectively. The flux recovery ratio was enhanced from 50.6% for the pure PSf membrane to 75% and 62% for POSS-PSf at 0.5% and 1wt.% POSS, respectively. Also, the best results, such as suitable antifouling properties and good permeability were gained for 0.5wt% of POSS. Sun et al. [26] fabricated polyvinylidene fluoride (PVDF)/EG-POSS. EG-POSS is the grafting between ethylene glycol (EG) and POSS. Conforming to the results antifouling properties and hydrophilicity of membranes increased by using EG-POSS. You et al. [27] modified the polyamide membrane by functionalization of POSS by polyethylene glycol. The charge and hydrophilicity of the membrane surface improved in comparison to the neat membrane. The highest pure water flux measured 38.7 Lm$^{-2}$h$^{-1}$ at 0.2MPa without reducing the Na$_2$SO$_4$ rejection (87.1-91.6%). He et al. [28] prepared POSS-polyamide membranes by interfacial polymerization. The membranes were used to the separation of selenium and arsenic. The highest rejection of SeO$_4^{2-}$, SeO$_2^{2-}$ and HAsO$_4^{2-}$ was obtained 93.9, 96.5 and 97.4% for TFN membrane containing 0.15 wt.% UiO-66, respectively.

In this work, the phase inversion technique was employed to fabricate the polyethersulfone (PES) NF membranes. PES membrane is inherently hydrophobic that affects membrane fouling. The improvement of antifouling abilities and surface hydrophilicity of nanofiltration membranes can be achieved by applying graft polymerization, surface coating and the incorporation of inorganic nanofillers [29, 30].

Herein, 4-aminobutyric acid was employed to the functionalization of glycidyl-POSS. Carboxyl and amine groups in 4-aminobutyric acid improved membrane surface hydrophilicity and compatibility. Then the membranes were fabricated by coating functional glycidyl POSS (COOH-POSS) on the PES membrane surface. FTIR, SEM, 3D surface images, water content and contact angle were applied to characterize the fabricated membranes. The effect of different concentrations of COOH-POSS was studied on the physicochemical properties, membrane morphology, antifouling properties and separation performance. The ability of COOH-POSS/PES membrane in the separation of Na$_2$SO$_4$, Cr(SO$_4$)$_2$, Cu(NO$_3$)$_2$ and Pb(NO$_3$)$_2$ from the water was studied.

2. Materials and methods

2.1. Materials

Polyethersulfone (PES) (M$_N$=58,000 g/mol) as the membrane matrix was supplied by BASF company New Jersey, USA (Ultrason E6020P, M$_W$:58,000, T$_g$:225 °C). The N,N dimethylacetamide (DMAC: 87.12 g/mol, 0.94 g/cm3) was obtained from DAEJUNG, Korea. Octaglycidyloxypropyl-silsesquioxane (glycidyl POSS) was provided from Iran Polymer and Petrochemical Institute. The polyvinylpyrrolidone (PVP: 25,000 g/mol) was purchased from Merck, Inc., Germany. Glutaraldehyde (GA) aqueous solution (Grade II, 25%) was supplied from Sigma-Aldrich. 4-aminobutyric acid was purchased from Sigma-Aldrich. Na$_2$SO$_4$, Pb(NO$_3$)$_2$, Cr(SO$_4$)$_2$ and Cu(NO$_3$)$_2$ salts were supplied by Merck, Inc., Germany and applied to prepare feed solutions for the membrane separation studies.

2.2. Fabrication of PES membrane

PES membranes were fabricated via phase inversion technique and immersion into the water bath. PES (18 wt.%) and PVP (1 wt.%) were dissolved in DMAC. After stirring solution for 5 h to achieve homogeneous solution, the prepared solution was left at room temperature for one day for removal of dissolved air bubbles. Then an applicator was used to cast the prepared solution on the dry and clean glass plate, and then immersed in a bath of deionized water for one day. After that membranes were dried between paper sheets for 24 h at the room temperature.

For surface modification of PES membrane, the different ratio of POSS and 4-aminobutyric acid (0, 0.5, 1 and 1.5 wt.%) was added to the aqueous solution and was stirred for 2h at 50 °C. Then the prepared solution was
sonicated by Ultrasonic instrument (Parsonic 11S model, S/N PN-88159, Iran) for 1 h. The PES membranes were put on the clean and dry glass plates then the prepared solution was poured on the surface of membranes. After 5 min the membranes were put in an oven for 3 h at 50 °C. Fig. 1 exhibited the chemical structure of 4-aminobutyric acid functionalized POSS (COOH-POSS).

![Fig. 1. Schematic diagram of 4-aminobutyric acid functionalized POSS (COOH-POSS).](image)

2.3. Characterization of membrane

The membranes morphology was explored by SEM images. Before analysis, the membrane samples were kept in the liquid nitrogen and then were broken. The gold was employed to sputter the sample of membranes for providing electrical conductivity.

The measurements of water contact angle (θ) of the fabricated membranes were performed by contact angle analyzer (G10, Kruss, Germany) and used to study the hydrophilicity of the membrane surface via deionized water as probe liquid.

The membrane porosity (ε) was evaluated by the below equation:

$$\varepsilon(\%) = \left(\frac{W_d - W_w}{\rho_f V_m}\right) \times 100$$ \hspace{1cm} (1)

Where W_d and W_w are the weight of dry and wet membrane (g), V_m and ρ_f are membrane volume (cm^3) and water density (g/cm^3), respectively. For decreasing test errors, all the experiments were performed three times and then their averages were computed.

The mean pore sizes of produced membranes were measured by Guerout–Elford–Ferry equation (2) [31]:

$$r_m = \sqrt{\frac{2.9 - 1.75\varepsilon}{\eta \Delta P}}$$ \hspace{1cm} (2)

Where η is the viscosity of water (8.9×10^{-4} Pa.s), Q and ΔP are the volume of the permeated pure water flux (m^3/s), and operating pressure ($0.45 MPa$), ε, A and L are the membrane porosity, the membrane filtration area (m^2) and the membrane thickness (m).
2.4. Membrane filtration performance

The salt rejection and pure water flux for the fabricated membrane was evaluated by cross-flow NF system. The prepared membranes were compacted with distilled water for 1 h at 4.5 bar to gain steady state conditions. Then filtration test was done at 4.5 bar and 25°C. The permeation flux was computed by the equation (3):

$$J_{w,1} = \frac{V}{A \times t}$$

Where $J_{w,1}$ is the permeate flux ($Lm^{-2}h^{-1}$), A is the membrane surface area (11.94 cm^2), t is the filtration time (h) and V is the volume of collected permeate (L).

The membrane rejection was determined by equation (4):

$$R(\%) = \left(1 - \frac{C_p}{C_f}\right) \times 100$$

Where C_f and C_p are the concentration of feed solution and permeate, respectively.

All filtration performance was done three times to reduce experimental errors.

The antifouling properties of the fabricated membranes were investigated by the flux recovery ratio (FRR). Milk powder solution was used to evaluate antifouling performance of the prepared membranes at 4.5 bar for 1 h. After filtration the fouled membranes were kept in to the deionized water for 30 min. Then the pure water flux measured at 4.5 bar and 25°C by washed membrane to calculate the flux recovery ratio. The following equation was used to evaluate the flux recovery ratio:

$$\text{FRR}\% = \left(\frac{J_{w,2}}{J_{w,1}}\right) \times 100$$

Where $J_{w1} (L/m^2h)$ is the pure water flux of clean membrane and $J_{w2} (L/m^2h)$ is the pure water flux of uncleaned membrane.

3. Results and discussion

3.1. Membrane Characterization

The chemical structure of modified membrane was characterized by FTIR as shown in Fig. 2. The peaks at 1089.26 and 1106 cm$^{-1}$ are assigned to the cage structure of Si-O-Si groups which revealed the existence of POSS nanoparticles on the membrane surface. The peaks at 3000 and 3500 cm$^{-1}$ are related to the presence of amine (‒NH) and hydroxyl (‒OH) functional groups. Peaks at 2958.25 and 2926.47 cm$^{-1}$ are attributed to the stretching vibration of C-H bonds. Moreover, the peaks at 1665.05 cm$^{-1}$ corresponded to the C=O stretching of the carboxyl groups [3, 6, 10].

![Fig. 2. FTIR spectra of 4-aminobutyric acid and glycidyl POSS and the modified membranes.](image)

3.2. Membrane morphology

The cross-sectional and surface morphology of membranes are shown in Fig. 3. As seen, by increasing the concentration of POSS/4-aminobutyric acid on the top surface of membrane change the membrane morphology compare to the neat PES membrane. Moreover, the cross-sectional SEM images of the fabricated membranes...
show an asymmetric and porous structure that is containing dense top layer and porous sub layer with finger like structure. By increasing the concentration of POSS/4-aminobutyric acid on the membrane surface increase the thickness of active layer that act as a barrier for ions transport. The uniform dispersion of POSS/4-aminobutyric acid is clear in the surface images of SEM. But in high concentration of POSS/4-aminobutyric acid occurred the accumulation of POSS particles. Moreover, by introducing POSS/4-aminobutyric acid increased porosity of the modified membranes in comparison to the virgin PES membrane because of the cage and porous structure of POSS. Fig. 4 presents EDX and mapping analysis for the modified membranes containing of COOH-POSS particles. The silicon (Si) element was observed from EDX analysis to confirm the existence of POSS/4-aminobutyric acid on the membrane surface. Moreover, EDX mapping indicated a uniform distribution of nanoparticles on the membrane surface. Fig. 5 shows the overall porosity for the prepared membranes. However, the membrane porosity declined for M2 and M3 compare to M1 that can be attributed to the pores filling phenomenon at the high concentration of COOH-POSS nanoparticles. The highest mean pore size was observed for M1, as illustrated in Fig. 6. The mean pore size of prepared membranes declined by increasing the concentration ratio of POSS to 4-aminobutyric acid compared to M1. As seen in SEM images, the pores of membrane are filled by the accumulation nanoparticles on the membrane surface that can be a reason to decrease the mean pure size of membrane at high concentration of nanoparticles [6, 10].
Fig. 3. SEM images of pure PES and modified membranes.

Fig. 4. EDX elemental analysis and dot mapping distribution of Si element for modified membrane (M3).
The surface morphology of the produced membrane was appraised by three-dimensional surface images by SPM software (version 6.4, Femtoscan). The results of 3D surface images were investigated in terms of roughness average (R_a), root mean square roughness (R_q), and maximum height of roughness (R_{max}) as given in Fig. 7 and Table 1. The results revealed that surface of neat PES membrane is rougher than the surface of PES/COOH-POSS membranes and the R_a declined from 5 nm for M0 to 3.9 nm for M3. This trend is due to the placement of COOH-POSS on the membrane surface with uniformly distribution which fills the valleys on the surface of membrane and decrease the surface roughness [32, 33].
Fig. 7. 3D surface images for the fabricated membranes.

Table 1. Detail of surface roughness parameter for the fabricated membranes.

<table>
<thead>
<tr>
<th>Sample</th>
<th>R_a (nm)</th>
<th>R_{max} (nm)</th>
<th>R_q (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>5.086</td>
<td>22.16</td>
<td>6.142</td>
</tr>
<tr>
<td>M1</td>
<td>4.309</td>
<td>20.51</td>
<td>5.334</td>
</tr>
<tr>
<td>M2</td>
<td>4.052</td>
<td>20.05</td>
<td>4.968</td>
</tr>
<tr>
<td>M3</td>
<td>3.905</td>
<td>19.83</td>
<td>4.843</td>
</tr>
</tbody>
</table>

3.2. Water content and contact angle

The water content and contact angle of the fabricated membranes are appropriate criterion for measuring the hydrophilicity of membrane. As seen in Table 2, the water contact angle declined from 62° for the bare PES to 40° for M3 which introduce a more hydrophilic surface for the modified membrane by introducing COOH-POSS on the membrane surface. This may be assigned to the presence of carboxyl (–COOH), hydroxyl (–OH) and amine (–NH) groups on the membrane surface. Also by increasing the amount of nanoparticles on the membrane surface, the water content increased from 68 to 77.35% that can be explained by the cage and porous structure of POSS [21, 34, 35].

Table 2. Water content and contact angle of the bare PES and modified membranes.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Contact angle (°)</th>
<th>Water content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>62</td>
<td>68</td>
</tr>
<tr>
<td>M1</td>
<td>43</td>
<td>75.86</td>
</tr>
<tr>
<td>M2</td>
<td>50</td>
<td>73.11</td>
</tr>
<tr>
<td>M3</td>
<td>40</td>
<td>77.35</td>
</tr>
</tbody>
</table>

4. Fabricated membrane performance

4.1. Pure water flux

Fig. 7 demonstrate the result of pure water flux. The pure water flux decreased from 12.08 (L/m²h) for the neat PES membrane to 5.6 for M3. This phenomenon can be described by the agglomeration of nanoparticles on the surface of membrane which blocks the pores and decrease PWF of prepared membrane. Also as seen in SEM images the thickness of top layer raised by accumulation of nanoparticles at higher concentration that caused to decrease the pure water flux of modified membranes [36].
4.2. Salt and heavy metal rejection

The performance of the fabricated membranes were evaluated via the rate of flux and rejection of Na$_2$SO$_4$ and heavy metals (Pb(NO$_3$)$_2$, CrSO$_4$, and Cu(NO$_3$)$_2$). As presented in Fig. 8 the rejection of Na$_2$SO$_4$ increased from 40.76% for the pure PES membrane to 62% for M3 at 1.5 wt.% COOH-POSS. Donnan exclusion is the most effective mechanisms on salt rejection [36]. Also the formation of dense structure on the membrane surface is another element that increases salt rejection (as seen the SEM image of M3) [37, 38].

Fig. 8 demonstrate the rejection of CrSO$_4$ for the prepared membranes at different concentration of COOH-POSS. The obtained results show the improvement of CrSO$_4$ rejection from 45% for the bare PES membrane to 80% for M3 at 1.5 wt.% COOH-POSS. Adsorption mechanism is considered as a main factor to improve the CrSO$_4$ rejection. Also the repulsion of SO$_4^{2-}$ ions is due to the presence of negative charges functional groups on the membrane surface. The highest Cu(NO$_3$)$_2$ rejection was obtained 80% for M1 at 0.5 wt.% of COOH-POSS as illustrated in Fig. 10. Enhancement of Cu(NO$_3$)$_2$ rejection is explained by the adsorption sites of POSS structure and the presence of negative charges on the surface of membranes. Nevertheless, Cu(NO$_3$)$_2$ rejection decline at high concentration of COOH-POSS is thanks to the agglomeration of nanoparticles, pore blocking and decreasing active sites. Fig. 11 reveals the obtained data from Pb(NO$_3$)$_2$ rejection for the neat PES and modified membranes at diverse content of COOH-POSS.
Fig. 9. The CrSO₄ rejection of bare PES and modified membranes.

Fig. 10. The heavy metal rejection of membranes for Cu(NO₃)₂ aqueous solution.

The Pb(NO₃)₂ rejection was raised from 31% for the pristine PES membrane to 83% for M1 at 0.5 wt.% nanoparticles. The significant improvement of Pb(NO₃)₂ rejection is attributed to the cage structure of POSS that create active sites for adsorption of Pb²⁺ ions. Moreover, negative charges on the membrane surface lead to repulse NO₃⁻ ions. However by increase of POSS: 4-aminobutyric acid ratio, the Pb(NO₃)₂ rejection reduces in the comparison to M1 membrane. The decrease in Pb(NO₃)₂ rejection at high content of COOH-POSS may be due to nanoparticles accumulation on the membrane surface. It was found that COOH-POSS has high capacity in heavy metal separation.
4.3. Antifouling performance

Membrane fouling is one of the major problem in nanofiltration membranes which is affected by the surface roughness, surface charge, surface functional groups and wettability [39]. Fouling decreases the permeation flux, selectivity and the life time of membrane. Antifouling performance of resulted membrane was investigated by the flux recovery ratio (FRR) as displayed in Fig.12. The results show the highest FRR% (63.32%) for M2 membrane. It was found from FRR% that modified membranes have better antifouling performance than unmodified membrane but as seen the FRR% of M1 has declined in comparison to bare PES membrane. This phenomenon can be explained by COOH-POSS accumulation on the membrane surface (see surface images of SEM). Moreover, the obtained results from FRR% and 3D surface images data indicate that the decrease of membrane surface roughness leads to lower fouling [40,41,42, 43].
5. Conclusion
The surface modification of NF membranes was performed to achieve high separation performance. The membranes water content, content angle, porosity, mean pore size, pure water flux, Na$_2$SO$_4$ rejection and heavy metal rejection (Pb(NO$_3$)$_2$, CrSO$_4$ and Cu(NO$_3$)$_2$) of membranes were studied. Membrane hydrophilicity and negative charges on the membrane surface increased due to the present of carboxyl, hydroxyl and amine groups into the COOH-POSS structure. It was found that salt rejection was affected by Donnan exclusion. Moreover, adsorption mechanism was the main factor to improve the heavy metal rejection of the modified membranes. Also FRR% increased from 23.5 % for the virgin PES membrane to 63.32% for the modified membrane (M2). SEM images clearly reveal a dense top layer and finger-like structure. However, the pure water flux revealed the decline trend. But among prepared membranes, M3 at 1.5 wt.% COO-POSS concentration showed the best CrSO$_4$ rejection (80%) and Na$_2$SO$_4$ rejection (62%). Moreover, M1 at 0.5 wt.% of COO-POSS showed the Cu(NO$_3$)$_2$ and Pb(NO$_3$)$_2$ rejection 80% and 83%, respectively.

Conflicts of Interest
The author declares no conflict of interest.

Author information
*Corresponding Author: Abdolreza Moghadassi, Samaneh Bandehali
E-mail address: a-moghadassi@araku.ac.ir, s-bandehali@phd.araku.ac.ir

ORCID
Abdolreza Moghadassi: 0000-0003-0733-4540.

References

